Inosine-5'-monophosphate dehydrogenase is a rate-determining factor for p53-dependent growth regulation.
نویسندگان
چکیده
We have proposed that reduced activity of inosine-5'-monophosphate dehydrogenase (IMPD; IMP:NAD oxidoreductase, EC 1.2.1.14), the rate-limiting enzyme for guanine nucleotide biosynthesis, in response to wild-type p53 expression, is essential for p53-dependent growth suppression. A gene transfer strategy was used to demonstrate that under physiological conditions constitutive IMPD expression prevents p53-dependent growth suppression. In these studies, expression of bax and waf1, genes implicated in p53-dependent growth suppression in response to DNA damage, remains elevated in response to p53. These findings indicate that under physiological conditions IMPD is a rate-determining factor for p53-dependent growth regulation. In addition, they suggest that the impd gene may be epistatic to bax and waf1 in growth suppression. Because of the role of IMPD in the production and balance of GTP and ATP, essential nucleotides for signal transduction, these results suggest that p53 controls cell division signals by regulating purine ribonucleotide metabolism.
منابع مشابه
Induction of apoptosis by novel inosine monophosphate dehydrogenase, 3-hydrogenkwadaphnin
Today’s medical word is highly dependent on severel natural products (e.g. taxol) in fighting different kinds of cancer and in constantly working to found new compounds. In this respect, 3-hydrogenkwadaphnin is a new diterpene ester isolated from Dendrostellera lessertii (Thymelaceae). It has been previously shown that this new compound has high anti-tumor activity and the capability of arresti...
متن کاملInduction of apoptosis by novel inosine monophosphate dehydrogenase, 3-hydrogenkwadaphnin
Today’s medical word is highly dependent on severel natural products (e.g. taxol) in fighting different kinds of cancer and in constantly working to found new compounds. In this respect, 3-hydrogenkwadaphnin is a new diterpene ester isolated from Dendrostellera lessertii (Thymelaceae). It has been previously shown that this new compound has high anti-tumor activity and the capability of arresti...
متن کاملThe role of IMP dehydrogenase 2 in Inauhzin-induced ribosomal stress
The 'ribosomal stress (RS)-p53 pathway' is triggered by any stressor or genetic alteration that disrupts ribosomal biogenesis, and mediated by several ribosomal proteins (RPs), such as RPL11 and RPL5, which inhibit MDM2 and activate p53. Inosine monophosphate (IMP) dehydrogenase 2 (IMPDH2) is a rate-limiting enzyme in de novo guanine nucleotide biosynthesis and crucial for maintaining cellular ...
متن کاملImmortal DNA strand cosegregation requires p53/IMPDH-dependent asymmetric self-renewal associated with adult stem cells.
Because they are long-lived and cycle continuously, adult stem cells (ASCs) are predicted as the most common precursor for cancers in adult mammalian tissues. Two unique attributes have been proposed to restrict the carcinogenic potential of ASCs. These are asymmetric self-renewal that limits their number and immortal DNA strand cosegregation that limits their accumulation of mutations due to D...
متن کاملCrystal structure of human type II inosine monophosphate dehydrogenase: implications for ligand binding and drug design.
Inosine monophosphate dehydrogenase (IMPDH) controls a key metabolic step in the regulation of cell growth and differentiation. This step is the NAD-dependent oxidation of inosine 5' monophosphate (IMP) to xanthosine 5' monophosphate, the rate-limiting step in the synthesis of the guanine nucleotides. Two isoforms of IMPDH have been identified, one of which (type II) is significantly up- regula...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular biology of the cell
دوره 9 1 شماره
صفحات -
تاریخ انتشار 1998